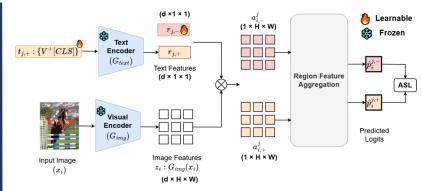

PositiveCoOp: Rethinking Prompting Strategies for Multi-Label Recognition with Partial Annotations

Samyak Rawlekar, Shubhang Bhatnagar, Narendra Ahuja

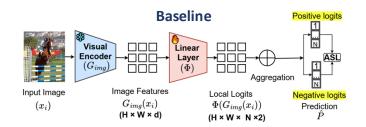
Motivation


Are Negative Prompts Truly Analyzing Features Related to Class Absence ?

Negative prompts activate same image regions as positive prompts, corresponding to object presence

Contributions

- We show negative prompting hurts MLR performance
- We propose PositiveCoOp, that improves MLR by replacing negative prompts with learned negative embeddings
- We propose a vision-only baseline to isolate the impact of positive and negative prompting
- Result(mAP): Only Positive Prompt Learning (PositiveCoOp)
 > Dual Prompt Learning (DualCoOp) ≈ Baseline > Only
 Negative Prompt Learning (NegativeCoOp)



PositiveCoOp

Class presence features: Learn positive prompt Class absence features: Learn negative embeddings in feature space

NegativeCoOp

Class presence features: Learn positive embeddings in feature space Class absence features: Learn negative prompt

Baseline relies solely on CLIP visual features and helps estimate the impact of different prompting strategies

Performance (mAP) on partial Labels

Dataset	Methods	#Params	10%	30%	50%	70%	Avg.
	DualCoOp	1.3M	78.7	81.7	82.5	82.8	81.9
	Baseline	80k	78.9	81.3	82.7	82.9	82.0
COCO	Negative CoOp	730k	77.8	81.0	82.2	82.7	81.6
	Positive CoOp	730k	79.8	83.0	83.7	84.0	83.2
	DualCoOp	0.3M	90.3	92.8	93.6	94.0	93.2
	Baseline	20k	90.5	92.8	93.3	93.9	93.1
VOC	Negative CoOp	170k	88.9	89.6	90.7	91.8	90.8
	Positive CoOp	170k	91.4	93.4	93.8	94.2	93.6

PositiveCoOp outperforms DualCoOp while requiring fewer parameters and less training time

Why is Negative Prompt Learning Ineffective?

Cosine Similarity	P1-N1 Pairs	P1-P2 Pairs	
(80cls-85prompt)			
Mean ± Std	0.56 ± 0.06	0.61 ± 0.01	
(Min, Max)	(0.37, 0.67)	(0.55, 0.63)	

CLIP does not learn to associate negative prompts to class absence because of the scarcity of such data in LAION (0.47% of 400 million)

- Negative prompts are also associated with class presence
- Positive & negative prompts of a class project as closely as different positive prompts for it

Scan To know more

